martes, 19 de mayo de 2009

Geometria

La geometría es una rama de la matemática que se ocupa de las propiedades del espacio, como son: puntos, rectas, planos, polígonos, poliedros, curvas, superficies, etc. Sus orígenes se remontan a la solución de problemas concretos relativos a medidas y es la justificación teórica de muchos instrumentos, por ejemplo el compás, el teodolito y el pantógrafo.

La Geometria Griega

Las primeras civilizaciones mediterráneas adquieren poco a poco ciertos conocimientos geométricos de carácter eminentemente práctico. La geometría en el antiguo Egipto estaba muy desarrollada, como admitieron Heródoto, Estrabón y Diodoro, que aceptaban que los egipcios habían "inventado" la geometría y la habían enseñado a los griegos; aunque lo único que ha perdurado son algunas fórmulas –o, mejor dicho, algoritmos expresados en forma de "receta"– para calcular volúmenes, áreas y longitudes, cuya finalidad era práctica. Con ellas se pretendía, por ejemplo, calcular la dimensión de las parcelas de tierra, para reconstruirlas después de las inundaciones anuales. De allí el nombre γεωμετρία, geometría: "medición de la tierra" (de γῆ (gê) 'tierra' más μετρία (metría), 'medición').

Los denominados Papiro de Ahmes y Papiro de Moscú muestran conjuntos de métodos prácticos para obtener diversas áreas y volúmenes, destinados al aprendizaje de escribas. Es discutible si estos documentos implican profundos conocimientos o representan en cambio todo el conocimiento que los antiguos egipcios tenían sobre la geometría.

La Geometria en la Edad Media

Durante los siguientes siglos la Matemática comienza nuevos caminos - Álgebra y Trigonometría - de la mano de indios y árabes, y la Geometría apenas tiene nuevas aportaciones, excepto algunos teoremas de carácter más bien anecdótico. En Occidente, a pesar de que la Geometría es una de las siete Artes Liberales (encuadrada concretamente en el Quadrivium), las escuelas y universidades se limitan a enseñar "Los Elementos", y no hay aportaciones, excepto tal vez en la investigación sobre la disputa del V postulado. Si bien no se llegó a dilucidar en este periodo si era o no independiente de los otros cuatro, sí se llegaron a dar nuevas formulaciones equivalentes de este postulado.lo que es.

No hay comentarios:

Publicar un comentario